133 research outputs found

    Optical force sensors for smart prostheses

    Get PDF

    Integration of stretchable optical waveguides with sources and detectors

    Get PDF
    This presentation explains why we should use flexible or stretchable waveguides and why we should integrate sources and detectors. Furthermore, the status of the ongoing research is detaile

    Characterization of the modal parameters of composite laminates using innovative ultrathin polymer waveguide sensor foils

    Get PDF
    The use of composite materials, like glass- and carbon- fiber reinforced polymers, is expected to increase exponentially in the coming years. Consequently, in order to monitor the structural health of these materials, the development of new sensing devices is rapidly accelerating. For this purpose, our research groups have recently developed new ultra-thin polymer waveguide sensors which can be exploited to measure both uniaxial and multiaxial strains occurring in composite components. These sensing foils are manufactured by creating Bragg gratings in waveguides realized in flat polymeric substrates, which makes their placement and alignment easier compared to traditional fiber optic sensors. Moreover, using a non-straight waveguide it is possible to spatially multiplex the sensing gratings in such a way that an optical strain rosette can be created. This paper investigates the suitability of the proposed polymer waveguide sensors for the estimation of the modal parameters of composite components

    Multimode PDMS waveguides fabricated using a hot-embossing technique

    Get PDF
    A novel method for fabricating multimode PDMS waveguides is presented. This process is based on a hot-embossing technique and generates high quality optical waveguides without a substantial residual layer after embossing. Furthermore, the process allows for low-cost fabrication since it relies on a replication technique and additionally only commercially available materials are used. The measured propagation loss is smaller than 0.24dB/cm and can be further reduced by improving the master mould quality

    Flexible photonic sensors realized using printing technologies

    Get PDF
    Making sensors flexible and thin, is key to apply them on curved, moving surfaces, e.g. for wearable applications or to embed them in mechanical structures. Photonic sensor systems require the integration of microstructures (e.g. polymer waveguides), nanostructures (e.g. gratings), which can be realized using nanoimprint lithography, but may also need additional active or passive optical components, which can be integrated using laser printing technologies

    Fabrication of a shear stress sensor matrix using standard printed circuit board and overmolding technologies

    Get PDF
    In contrast to pressure distributions that can nowadays easily be measured using commercial sensor sheets, this is not yet the case for frictional or shear stresses. Those stresses act parallel to a surface which makes it more challenging to develop suitable sensors. A number of shear sensor prototypes have been reported until now, but realizing a matrix of shear sensors remains a big challenge because of cost and complexity issues. Therefore, this paper presents a fabrication approach for realizing a matrix of shear sensors using standard PCB and moulding technologies. The presented sensor is based on changing the coupling of optical power between a Light Emitting Diode and a set of photodiodes in combination with an overmoulding step, as such realizing a mechanical transducer. To demonstrate the fabrication flow, a first demonstrator incorporating a 5-taxel sensor matrix has been realized, able to record the in-plane shear stress magnitude and direction

    Expanded-beam backside coupling interface for alignment-tolerant packaging of silicon photonics

    Get PDF
    We demonstrate an alignment-tolerant backside coupling interface in the O-band for silicon photonics by generating an optimized through-substrate (downward) directionality beam from a TE-mode grating coupler and hybrid integrating the chip with backside silicon microlenses to achieve expanded beam collimation. The key advantage of using such an expanded beam interface is an increased coupling tolerance to lateral and longitudinal misalignment. A 34 mu m beam diameter was achieved over a combined substrate thickness of 630 mu m which was then coupled to a thermally expanded core single-mode fiber to investigate the tolerances. A 1-dB fiber-to-microlens lateral alignment tolerance of 14 mu m and an angular alignment tolerance of 1 degrees was measured at a wavelength of 1310 nm. In addition, a large +/- 2.5 mu m 1-dB backside alignment accuracy was measured for the placement of microlens with respect to the grating. The radius of curvature of Si microlens to achieve a collimated beam was 480 mu m, and a 1-dB longitudinal alignment tolerance of 700 mu m was measured for coupling to a single-mode expanded core fiber. The relaxation in alignment tolerances make the demonstrated coupling interface suitable for chip-to-package or chip-to-board couplin

    Chip-level interconnections realized via the laser-induced forward transfer technique

    Get PDF
    In this paper, successful flip-chip bonding and DC characterization of single photodiode and VCSEL chips via Laser-Induced Forward Transfer (LIFT) printed micro-bumps of indium, silver nano-particle (AgNP) based inks and pastes, is reported

    Design and fabrication of blazed gratings for a waveguide-type head mounted display

    Get PDF
    In a waveguide-type display for augmented reality, the image is injected in the waveguide and extracted in front of the eye appearing superimposed on the real-world scene. An elegant and compact way of coupling these images in and out is by using blazed gratings, which can achieve high diffraction efficiencies. We report the design of blazed gratings for green light (lambda = 543 nm) and a diffraction angle of 43 degrees. The blazed gratings with a pitch of 508 nm and a fill factor of 0.66 are fabricated using grayscale electron beam lithography. We outline the subsequent replication in a polymer waveguide material with ultraviolet nanoimprint lithography and confirm a throughput efficiency of 17.4%. We finally show the in- and outcoupling of an image through two blazed gratings appearing sharp and non-distorted in the environment. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Ball lens embedded through-package via to enable backside coupling between silicon photonics interposer and board-level interconnects

    Get PDF
    Development of an efficient and densely integrated optical coupling interface for silicon photonics based board-level optical interconnects is one of the key challenges in the domain of 2.5D/3D electro-optic integration. Enabling high-speed on-chip electro-optic conversion and efficient optical transmission across package/board-level short-reach interconnections can help overcome the limitations of a conventional electrical I/O in terms of bandwidth density and power consumption in a high-performance computing environment. In this context, we have demonstrated a novel optical coupling interface to integrate silicon photonics with board-level optical interconnects. We show that by integrating a ball lens in a via drilled in an organic package substrate, the optical beam diffracted from a downward directionality grating on a photonics chip can be coupled to a board-level polymer multimode waveguide with a good alignment tolerance. A key result from the experiment was a 14 chip-to-package 1-dB lateral alignment tolerance for coupling into a polymer waveguide with a cross-section of 20 x 25. An in-depth analysis of loss distribution across several interfaces was done and a -3.4 dB coupling efficiency was measured between the optical interface comprising of output grating, ball lens and polymer waveguide. Furthermore, it is shown that an efficiency better than -2 dB can be achieved by tweaking few parameters in the coupling interface. The fabrication of the optical interfaces and related measurements are reported and verified with simulation results
    corecore